Reduced Phrenic Motoneuron Recruitment during Sustained Inspiratory Threshold Loading Compared to Single-Breath Loading: A Twitch Interpolation Study
نویسندگان
چکیده
In humans, inspiratory constraints engage cortical networks involving the supplementary motor area. Functional magnetic resonance imaging (fMRI) shows that the spread and intensity of the corresponding respiratory-related cortical activation dramatically decrease when a discrete load becomes sustained. This has been interpreted as reflecting motor cortical reorganization and automatisation, but could proceed from sensory and/or affective habituation. To corroborate the existence of motor reorganization between single-breath and sustained inspiratory loading (namely changes in motor neurones recruitment), we conducted a diaphragm twitch interpolation study based on the hypothesis that motor reorganization should result in changes in the twitch interpolation slope. Fourteen healthy subjects (age: 21-40 years) were studied. Bilateral phrenic stimulation was delivered at rest, upon prepared and targeted voluntary inspiratory efforts ("vol"), upon unprepared inspiratory efforts against a single-breath inspiratory threshold load ("single-breath"), and upon sustained inspiratory efforts against the same type of load ("continuous"). The slope of the relationship between diaphragm twitch transdiaphragmatic pressure and the underlying transdiaphragmatic pressure was -1.1 ± 0.2 during "vol," -1.5 ± 0.7 during "single-breath," and -0.6 ± 0.4 during "continuous" (all slopes expressed in percent of baseline.percent of baseline-1) all comparisons significant at the 5% level. The contribution of the diaphragm to inspiration, as assessed by the gastric pressure to transdiaphragmatic pressure ratio, was 31 ± 17% during "vol," 22 ± 16% during "single-breath" (p = 0.13), and 19 ± 9% during "continuous" (p = 0.0015 vs. "vol"). This study shows that the relationship between the amplitude of the transdiaphragmatic pressure produced by a diaphragm twitch and its counterpart produced by the underlying diaphragm contraction is not unequivocal. If twitch interpolation is interpreted as reflecting motoneuron recruitment, this study supports motor reorganization compatible with "diaphragm sparing" when an inspiratory threshold load becomes sustained.
منابع مشابه
Phrenic motoneuron discharge during sustained inspiratory resistive loading.
I determined whether prolonged inspiratory resistive loading (IRL) affects phrenic motoneuron discharge, independent of changes in chemical drive. In seven decerebrate spontaneously breathing cats, the discharge patterns of eight phrenic motoneurons from filaments of one phrenic nerve were monitored, along with the global activity of the contralateral phrenic nerve, transdiaphragmatic pressure,...
متن کاملPhrenic motoneuron firing rates before, during, and after prolonged inspiratory resistive loading.
Phrenic motoneuron firing rates during brief inspiratory resistive loading (IRL) are high, and nearly all the motoneurons are recruited. Diaphragmatic fatigue has been difficult to demonstrate during IRL. Furthermore, evidence from studies in limb muscles has shown variable motoneuron responses to prolonged high-intensity loads. We studied phrenic motoneuron firing rates before, during, and aft...
متن کاملCervical magnetic stimulation as a method to discriminate between diaphragm and rib cage muscle fatigue.
Inspiratory muscle fatigue can probably determine hypercapnic respiratory failure. Diaphragm fatigue is detected by electrical phrenic stimulation (ELS), but there is no simple tool to assess rib cage muscle (RCM) fatigue. Cervical magnetic stimulation (CMS) costimulates the phrenic nerves and RCM. We reasoned that changes in transdiaphragmatic pressure twitch (Pdi,tw) with CMS and ELS should b...
متن کاملPhrenic motoneuron discharge patterns during hypoxia-induced short-term potentiation in rats.
Hypoxia-induced short-term potentiation (STP) of respiratory motor output is manifested by a progressive increase in activity after the acute hypoxic response and a gradual decrease in activity on termination of hypoxia. We hypothesized that STP would be differentially expressed between physiologically defined phrenic motoneurons (PhrMNs). Phrenic nerve "single fiber" recordings were used to ch...
متن کاملSustained preinspiratory cortical potentials during prolonged inspiratory threshold loading in humans.
Humans can program and control movements, including breathing-related movements. On the electroencephalogram (EEG), this preparation is accompanied by a low-amplitude negativity starting approximately 2.5 s before inspiration that is best known as a Bereitschaftspotential (BP). The presence of BPs has been described during the compensation of mechanical inspiratory loading, thus identifying a c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016